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Abstract—Data compression through a unitary transform is
utilized in tomographic microwave diversity image reconstruc-
tion in order to reduce the dimensionality and ta, extract the
features in the data space. The unitary compression is derived

by minimizing the mean-square error (MSE) and the unitary
transform is made of eigenvectors of the data’s covariance, re-

garded to be a Karhunen-Lo&e transform. Tomographic mi-
crowave frequency-swept imaging was developed using a unique

target-derived reference technique to access the three dimen-

sional Fourier space of the scatterer and an image reconstruc-
tion algorithm based on the projection slice lheorem[. It is shown
that: centimeter resolution of a complex object can be pre-

served even when half of the data set is compressed; and that

the reconstructed image remains identifiable by a human ob-
server even when 2/3 of the data set is compressed.

I. INTRODUCTION

T OROGRAPHIC microwave diversity imlaging was

developed and has been in use at the Electro-Optics

& Microwave-Optics Laboratory at the University of

Pennsylvania for over a decade. It demonstrates the fea-

sibility of broad-band projective imaging, with near-op-

tical resolution, of complex shaped scattering object in

the 2–26. 5 GHz range [ 1]–[4]. The basic working prin-

ciple of tomographic microwave diversity imaging relies

on the Bojarski identity of inverse scattering theory [7],

[8]. Based on this principle one can access a 2-D slice of

the 3-D Fourier space of the scattering, object by meas-

uring the scattered field from an object that can be rotated

in azimuth relative to a fixed broad-band transmitter/re-

ceiver (T/R) assembly and by digitally sweeping the

transmitted signal over a bandwidth of several GHz for

each rotation angle and coherently detecting the back-

scattered wave field. The Fourier space data acquired in

this fashion, is made of frequency response ethos which

are measured at different aspect views of the object which

are equally spaced over a prescribed angular window.

Each echo is quantized over the sweepin,g frequency spec-

trum. If these frequency response ethos are considered as

samples of a stochastic process, they are mutually corre-

lated and have some redundancy.
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In the practical applications of tomographic microwave

diversity imaging, there is an emerging problem of how

to deal with the vast amount of 2-D data acquired from

an imaging radar. For instance, target identification meth-

ods that form an associative memory based on neural net-

works [4] require that the data set be reduced. Similar

problems appear in telecommunication and communica-

tion networks where the capacity of the transmission

channel is limited and signal (data/image/voice) to be

transmitted have to be compressed before the transmis-

sion in order to achieve fast and least distorted transmis-

sion. For all these data compression problems, the key

point is how to find a signal representation identifying the

redundancy of the signal to be compressed. Although no

representation is best in all senses, the unitary transform

has been widely used to serve as one of the signal repre-

sentation in a lot of applications such as image processing

[51, speech processing [6], feature selection in pattern
recognition [17], and analysis and design of communi-

cation systems [11]. Unitary compression is a technique

that applies the unitary transform to data compression,

which allows the redundancy of the data to be identified

and thus removecl. The procedure of applying the unitary

transform to the dlata compression is described as follows:

the measured Fourier data is unitarily transformed to a

domain in which coordinates are de-correlated, and re-

dundant ones are identified and removed; the new Fourier

space data is then obtained by the inverse unitary trans-

form while maintaining a tolerable fixed distortion.

Based on the criterion of minimizing the mean-square

error, a unitary transfotm, called Karhunen–Lo6ve trans-

form (KLT), can be given, which will make the vectors

in the data space orthogonal with respect to each other.

As pointed out by Watanaba [13], the Karhunen-Lo6ve

expansion enables the extraction from a given set of data

those features whi,ch are the most significant, i.e., which

bear the greatest amount of information. To do this one

works with the covariance matrix averaged over the whole

data set and diaganalizes it. The data features are then the

eigenvectors and the dominance or importance of these

features are the eigenvalues. While a subset of the data
with respect to smaller eigenvalues of the data’s covari-
ance matrix is defined as redundant ones, the mean-square

error, which is derived as a summation of eigenvalues of
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the covariance, will be minimized. The Karhunen-Lodve

expansion has been widely used as a signal representation

to derive optimal receivers in communication, radar and

sonar applications because it involves bi-orthogonality,

i.e., that both bases and coefficients are orthogonal (or

unitary for complex process) [1 1], [12].

In this paper, we present first a brief review of the prin-

ciple of broad-band projective imaging by wavelength di-

versity, along with a description of the procedure we used

to access the Fourier space of scattering objects, employ-

ing our experimental microwave imaging facility. The

next part will be a simple introduction to the KLT and its

properties. The main part of the paper will describe image

reconstruction employing unitary compression technique.

This section presents both theoretic derivation and exper-

imental results of the reconstructed images, as well as a

discussion of the implication of these results.

II. TOMOGRAPHIC MICROWAVE DIVERSITY IMAGING

It is well-known that under physical optics approxi-

mation, the scattered field for a perfectly conducting ob-

ject due to plane wave illumination is given by [3]:

1*(P> R) =jA;; m T(r) ejp” r dr (1)
—m

where T(r) represents scattering characteristic function of

the object; r is a position vector of an object point meas-

ured relative to a common origin in the object; R is the

distance between an observation point and the common

origin; A represents the strength of the incident illumi-

nation, and p is a position vector in Fourier space that is

expressed as

p = k(zR – ii) (2)

where iR is the unit vector in the direction of the obser-

vation point and ~i the incident unit vector. It is obvious

that ~ (p, R) can be regarded as a generalized (3-D) Fou-

rier transform hologram of the scattering function of the

object multiplied by a complex constant. The diversity of

microwave imaging StemS frOm Varying by iR and/or Zi

(angular diversity) and sweeping k (frequency diversity).

Automated measurement of the scattered field from any

band in the 2-26.5 GHz frequency range is provided by

a coherent microwave measurement system consisting of

a microwave sweeper and a coherent receiver shown in
Fig. 1. The test object, a metallized 100:1 scale model

of a B-52 aircraft with a 79-cm wing span and 68-cm fu-

selage, was mounted on a computer-controlled positioner

situated in an anechoic chamber. The measurement se-

quence consisted of angular rotation in azimuth with 0.7

degree increment, frequency stepping in any band from

2-26.5 GHz in selected frequency steps, and measure-

ment and storage of the amplitude and phase from the

coherent receiver, as well as correction of clutter and sys-

tem response. All measurements ware carried out under

control of a DEC modulator instrumentation computer

(MINC 11 /2). To avoid aliasing in image space, the fre-

Fig. 1. Tomographic microwave diversity imaging system scheme.

(a)

(b)

(c)

Fig. 2. Results of tomographic microwave imaging of a 100:1 scale model

of the B-52 airplane for frequency-swept range 2-17 GHz and angular di-
versity 900 covered by 128 views. (a) Projection image. (b) Real part of
Fourier space slice taken. (c) Imaginary part of Fourier space slice taken.

quency steps were selected in increments of ~f = c/2L,

where L is the characteristic size of the scattering object.

Assuming L = 79 cm for the model B-52, a ~f = 74.6

MHz was used; thus 201 frequency steps were needed to

cover the 2– 17 GHz range in order to satisfy the Nyquist

sampling criterion. The azimuth angle @ was changed

from O degree to 90 degrees in steps of 0.7 degree for a

total of 128 angular looks extending from the head-on to

the broadside orientation of the B-52.

Examples of a slice of the 3-D Fourier domain of the

B-52 are shown in Fig. 2(b) and (c) which consist of polar

plots of 201 frequency points. In these polar plots fre-

quency is along the radial direction and aspect (azimuth

angle) is in the angular direction. Fourier inversion of the
slice data should yield a projection image of the scattering

centers of the target on a plane normal to the azimuthal
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axis of the rotation, i.e., the shape estimation of the ob-

ject shown in Fig. 2(a). Resolution of the reconstmcted

image is estimated to be about 2 cm from observed details

such as the engines and tail section in this image.

III. KARHUNEN-LOEVE TRANSFORM

The unitary transforms, defined in a linear inner-prod-

uct space in a complex field which is also called unitary

space, are of complex forms of the orthogonal transforms.

The Karhunen-Lo6ve transform is one of them and will

be outlined for review and to provide background for the

notation used in this paper. It is assumed that a given X

is a second-order discrete stochastic process and that its

covariance is denoted by a 2-D matrix E, defined by

E, = E[(x – rnx) (x – mx)’] (3)

where E[” ] denotes the statistical expectation; rrq is the

1-D mean vector of X, and * is complex transpose. Since

X is a colmplex process, XX is Hermitian (i e., complex

conjugate with real diagonal elements:). We are interested

only in the truncated version of thle Karhunen–Lo<ve

transform because it has been shown [12] to yield the best

approximation of a stochastic process of all N-dimen-

sional approximations.

Let T*= [@l,”””, ON] be a complete, unitary basis
such that X can be expanded in the ~sense of the mean-

square convergence:

x ~ f ~(iJ~i
i=l

where y ‘i ) are coordinates vector, and

resents the mean-square equivalence,

r/ N \27

(4)

the notation + rep-

i.e.,

= o. (5)

Owing to the unitary characteristics of the basis vector T,

the coordinates y ‘i ) can be obtained by

Y @J= (x, ~i ) (6)

where ( o, 0) denotes a complex inner-product for the dis-

crete case. The expansion given by (4) is regarded as the

Karhunen--Lo4ve expansion when the basis vector T is

chosen such that the coordinates are unitary in the prob-

abilistic sense:

E[(y(i) – m$)) (y(~) – m~))*] = )\i ~j (7)

where 6ti is the Kronecker delta function; Ai, an eigen-

value of X‘s covariance, is given by

~x 4, = ~, 4, (8)

where XX is a Hermitian and non-negative definite matrix,

and @i are eigenvectors of Z.. The Karhunen-Lodve trans-

form is therefore considered a hi-unitary transform be-

cause both the coordinates and the basis vectors are uni-

tary. It is shown that the Karhunen–Lo6ve transform is

made of the eigenvectors of the data’s covariance.

If we denote Y* = [y(l), 00 “ , y(N)], then (4) can be

expressed in matrix format:

x= T*Y (9)

Since {@i, i = 1, “ “ “ , N} are unitary with respect to

each other, i.e.,

(lo)

then

TT* = I, (11)

where Z is the identity matrix, and (11) can be rewritten

by

Hence, the inverse of a unitary matrix is the complex

transpose of the matrix. (9) can, therefore, be rewritten

by multiplying T using (11)

Y = TX. (13)

The covariance of Y is then given by

ZY = TEXT-l = TEXT*. (14)

From linear algebra, it is known that a Hermitian matrix

can be diagonalized by a unitary matrix consisting of ei-

genvectors of the Hermitian matrix, with the eigenvalues

of the Hermitian matrix as its diagonal elements [14].

Since the covariance matrix Z. is Hermitian and T is con-

sisting of eigenvectors of the matrix E., the covariance

matrix ZY given by (14) can be diagonalized with the ei-

genvalues of E. as its diagonal elements. Thus, (14) can

be rewritten by

EY = TEXT-l

– TEXT*—

. H.“

AN

(15)

This result implies that the coordinates matrix Y is unitary

because its covariance matrix is diagonal. Since the uni-

tary transform is an inner-product invariant, norm in-

variant transform, the variance is not changed after the

Karhunen-Lo6ve transform. The variance of X can be ex-

pressed by the diagonal terms of Y

Var(X) = Var(Y)

N—

where Ai are the eigenvalues of E,.

(16)
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IV. IMAGE RECONSTRUCTION EMPLOYING UNITARY

COMPRESSION

A. Theoretical Foundation

The image reconstructed from a sufficient quantity of

acquired Fourier space data is displayed in Fig. 2. How-

ever, the acquired Fourier space data is correlated and

there exists redundancy in terms of correlation. The uni-

tary compression is a technique in which the mean-square

error due to eliminating the redundant data is minimized

through a unitary transform. This unitary transform al-

lows us to extract the most significant features of the ac-

quired data and to compress the data sets so that their re-

dundancy can be removed. The procedure of applying the

unitary transform to the image reconstruction or image

transmission is depicted in Fig. 3. The Fourier space data

X is unitarily transformed to a domain in which coordi-

nates y ‘i ) are de-correlated, and redundant ones are iden-

tified and removed. The new Fourier space data ~ is ob-

tained by the inverse unitary transform T-1 while

maintaining a tolerable fixed distortion between X and

~. Thus, ~ is considered an effective representation con-

taining the most significant information and is used to re-

construct images.

According to Fig. 3, for the acquired data vector X, we

obtain

Y = TX, (17)

where

X* = [~(l), Q. . , ~(fv)];

y* = [y(l), . . . ,y(’v)];

and

T* = [~1, o “ o , +~].

From (17) and it follows that TT* = Z, and hence

where X can be referred to as an expansion in terms of a

complete unitary bases ~i (i. = 1, c “ “ , ~) and y(i) are the

coordinates. If we wish to retain a subset { y “), “ “ . ,

y ‘M)} of Y (M < N) and yet estimate X. This can be done

by replacing remaining N – ik’ components of Y by pre-

selected constants vector b(i) (i = k? + 1, 0 “ “ , N) to

obtain

M N

(19)

where ~ denotes the estimate of X. The error AX intro-

duced by neglecting the N – M terms can be represented

~————.——_—————————————.
J Y(11 y(l) ~ ;(!)

* -n-+
:1 uNITARY llWJS. ; DIMENSK3N “N,;;y+T&~ 1: IMAGE

:! ‘ : C“MPRESS”R T* !:
RECWSTRUCTW

~ ~ r-piit

Fig. 3. Block diagram of the image reconstruction procedure with unitary

compression transform.

as

AX=X–~

M

—— x– ~ y(i)~i _ f ~(i)~i

i=l i=M+l

= ; y(i)lJi – i~,y(i)ii - ,=~+, b(’)ti
f=l

= f (y(~) – b(i)+i. (20)
i=M+l

Thus the mean-square error e is given by

c = E[l\AX112] = E[AX “ AX*] (21)

where II . II is a norm notation. Substitution of (20) in (21)

leads to

~=E
[

i f (y(f) _ b(f)

i= M+lj=M+l

)(y(i) – b(i)) *J/i~; 1
N

= i=~+, -E[(y(i)– b(i))2]; (22)

where the unitary property of ~i is used to simplify the

result in (22). In order to minimize the c by choosing both

b(i) and ~i, we take the derivatives of ~ with res~ect to

b(i) and $i and set them to zero,

ae
m= –2{E[y(i)]

.
that is

— b(i)} = () (23)

which yields

b(i) = E[y(i)]

= m!)

= +~mf) (24)

where m$) and m;) represents the means of X and Y, re-

spectively. Hence, the mean-square error e can be rewrit-

ten after substituting (24) into (22):

E = i=~+l ~iE[(~- m.) (X - mx)’]~~

– i=~+, $~~~$f;— (25)
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where

EX = E[(x – m,) (x – mX)*]

is the covariance matrix of X.

To obtain the optimal ii (i = 1, c “ “ , N) we must not

only minimize c with respect to #i, but also satisfy the

unitary constraint:

~, ~j = d~;

or

TT* = I.

Thus we use the method of Lagrange multipliers and min-

imize

F=e — ,=$+, d,[~~~~ - 1]

= ,=$+1 4’7Ex4i - ‘i[~?+i - 11; (26)

with respect to ~i, where 0, denotes the Lagrange multi-

plier. By taking the derivatives with res]3ect to ~,, we have

~~ = ‘tr[4’Txx4tl – 2eivJ,[*?+il (27)

where V denotes a vector derivative operator. The follow-

ing can be given from the differentiability of the matrix:

V$,[lJ:Ell)tl = 2X.41; (28)

and

‘~[[+~til = 2ii. (29)

Thus, from (27) we have

(30)

which yields

‘.~~ = ‘iii! (31)

in which ~, are the eigenvectors of the (covarkmce matrix

El, i.e., ~i = q51(i = 1, “ . “, N), and 0, are the eigen-

values, i.e., Oi = Ai(i = 1, “ o . , N). AS previously dis-

cussed, the unitary transform T, consisting of eigenvec-

tors of the covariance matrix, is called Karhunen–Lot%e

transform. [t has been shown that Y is unitary (i.e., un-

correlated), which makes it useful in identification where

the unique features of the data can be extracted from the

unitary data sets based on Principal Component Analysis

[17] in which the redundancy of the data can be discerned

[18]. The mean-square error can be given by substituting

(31) in (25):

~ = ,=$+, @y(Ai@i)

= ,=;+, Ai. (32)

The mean-square error caused by discarding the N – M

redundant vectors is the summation of the N – M eigen-

values of the covariance matrix Z,. This result indicate

that the effectiveness of a transform component y”) for

representing the data vector X, is determined by its cor-

responding eigenvalue. If a component y ‘i ) is deleted, then

the mean-square error increases by A,, the corresponding

eigenvalue. Thus the set of y ‘i) with the M largest eigen-

values should be selected, and the remaining y”) dis-

carded since they can be replaced by the constants b‘1), i

=M+ l,””” , ~. It is, therefore, obvious that in order

to minimize the mean-square error while maximizing the

possibility of compressing the data (i.e., maximizing Jf),

the vectors chosen to be discarded should be these with

smaller eigenvalues. Based on the above analysis, two

important conclusions are given as follows: 1) The KLT

is the optimal transform for unitary compression with re-

spect to the mean-square error criterion. Since the most

significant features about the data are dominated by only

some transform components, removing the redundancy of

the data will be possible; 2) Since Y = TX, the transform

domain covariance ~Y is expressed by

XY = TEXT-l = TEXT* (33)

where T consists of the eigenvectors of ~,, which yields

r~, 1

(34)

This implies that the vector Y is unitary and uncorrelated.

Since the eigenvalues are the main diagonal terms of

EY, they correspond to the variances of the transform com-

ponents, i = 1, . . “ , ifl. Thus a logical criterion for

selecting transform components is to retain the set of

components with the M largest variance, while the re-

maining (N – M)I components are discarded. This process

of components selection is referred to as the variance cri-

terion method. Since the total variance of X is the sum of

all eigenvalues of ~X, the variance-loss-ratio is defined by

VLR =:
mean-square error

x 100%;
total variance

(35)

where the mean-square error is caused by eliminating

some vectors. The compression-ratio is defined as
. .

CR = “ ‘f ‘ectors ‘llmlnated x 100%.
total no. of vectors

(36)

These two ratios are used as the important performance

indexes to test the effectiveness of the unitary compres-

sion.

B, Experimental Results

The experimental setup was as described in Section II,

and the experimental conditions and parameters are same

as these given previously. The test object, a metallized
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100:1 scale model of B-52 aircraft, is mounted on a com-

puter-controlled position situated in the anechoic cham-

ber. The received Fourier space slice data is composed of

128 views spanning 90 degress rotation of the test object

(i.e., 128 equally spaced views spanning a 90 degrees an-

gular window), and 201 sampling points for each view

covering a 2– 17 GHz frequency bandwidth. Therefore,

the measured scattering data set for the target is a 128 x

201 matrix representing 128 aspect views, each of which

has 201 sampling points. The covariance representing the

correlations between aspect views, can be formed for the

128 aspect views. Since the scattering data are of complex

numbers, the covariance can be given by

Nwnp

~:= 1_ ~(?,(d) – m:)) (Xp – ~$J))*;N samp

(37)

where * denotes the complex transpose, N,a~p denotes the

number of the sampling points, and m:) is the mean of

x(”, which is computed as

m(l) = L ‘~ ~f)
x

N
(i = 1, -.. , Nvi~W) (38)

S,aIP k= I

where Nvi~W denotes the number of the aspect views. The

covariance matrix Z $ is Hermitian and takes a maximum

value when i = j. Both eigenvalues and eigenvectors of

the covariance matrix are computed by using IMSL, a

popular Fortran library for mathematical applications [19].

The Fourier space slice data received is transformed by

the KLT which consists of the eigenvectors of the data’s

covariance and the data in transform domain are unitary,

or uncorrelated with respect to each other. The eigenval-

ues solved by

‘x @t = ‘t 4i (39)

are illustrated in Fig. 4, where the eigenvalues, because

of Hermitian nature of the covariance matrix, are real val-

ued and can be ranked by magnitude. Since the eigenval-

ues are the main diagonal terms of Xv, they correspond to

the variance of the transform component y ‘2). Thus, Fig.

4 will be referred to as the variance distribution. The area

under the variance distribution curve for a given number

of transform components is an indication of the amount

of energy contained in those components. lt is apparent

that almost all of the signal energy (i.e., area under the

curve) is packed into first half or one-third KLT compo-

nents. Therefore, the most important information needed

for image reconstruction is concentrated in only a few

dominating aspect views and there is a great deal of re-

dundancy in the raw data. According to variance crite-

rion, these transform components corresponding to the

larger eigenvalues contain the most significant features

and should be kept, while the remaining with respect to

smaller eigenvalues are considered as the redundant ones

and discarded. The mean-square error caused by elimi-

nating the redundant data can be minimized by discarding

these aspects views with smaller associated eigenvalues.

10,0 i [ 1 I I I I

9.0 -

8.0 -
.-

d 7.0 -

~= 6.0 -
:

5.0 -
~
G 4.0 -

3.0 -

2.0 -

1.0

0.OO
16 32 48 64 80 96 112 128

Fig. 4. Ordered eigenvalues of data’s covarlance

TABLE I
VARIANCE-LOSS-RATIO(VLRj

VERSUSCOMPRESSIONRATIO (CR)

CR (%) VLR (%)

IO_

128 - 7.8% .01%
50_
]28

- 39% 1%
64
— = 50%128 .15%
leo
— == 78%128 4%
120
— = 94%128 18.6%

The relation between VLR and CR (both defined above)

is demonstrated in Table I, where it is seen that, even

when 64 vectors (half of the total number) are eliminated,

the loss (i. e., mean-square error) is small, VLR = ~.

If the signal energy is essentially contained in 43 of the

128 KLT components, a 3:1 data compression is consid-

ered. For a 3:1 compression, 43 KLT components cor-

responding to the largest diagonal terms of XX are se-

l~cted. Such a compressed unitary data set is denoted by

Y. An inverse KLT which, because of its unitary, is a

complex transpose of T, is employed to reconstruct the

image. Thus, the data to be used for image reconstruction

are X = T * ~. The images reconstructed by employing

unitary compression are presented in Figs. 5 and 6. As

illustrated in Fig. 5 where half of the coordinates y ‘t ) (64)

are discarded, the reconstmcted image is still legible and
has same centimeter resolution as the original one shown

in Fig. 1(a). Fig. 6 shows the reconstructed image when

2/3 of the received data have been discarded, i.e., a 3:1

data compression is achieved, in order to demonstrate that

the centimeter resolution can be preserved. It is appar-

ently shown in Fig. 6 that two engines on the wing can

still be recognized, although there is some blurring. In

conclusion, the unitary compression is an effective tech-

nique for dimension reduction in image reconstruction. It

presents the statistical optimal solution for the data

compression and feature extraction in the sense of mini-

mizing the mean-square error. The variance criterion has
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Fig. 5. Result of image with UCT when CR = 1/2 (half of the data are

Fig. 6. Resuh

compressed).

of image with UCT when CR = 2/3 (two I

data are compressed).
of the

demonstrated the capability of identifyingthe redundancy

of the correlated data sets.

V. CONCLUSION

This work was initiated to study the feasibility of ap-

plying unitary compression to tomographic microwave di-

versity image reconstruction. It was found that a unitary

transform, the Karhunen-Lo&e transform, can provide a

good representation of the data so that the redundancy of

the data can be identified and thus allows for removal.

This representation is based on minimizing the mean-

square error, which leads to a statistical optimal solution.
The mean-square error caused by discarding the redun-

dant data is derived as the sum of those eigenvalues cor-

responding to the discarded data. Therefore, the eigen-

values of the data’s covariance matrix are used as features

to identify the redundancy of the data. According to the

variance criterion, the discarded data, which is consid-

ered redundant, should be these with the smaller eigen-

values. The reconstructed images employing the unitary

compression show Ithat image quality is basically pre-

served after half of the total data has been selectively

eliminated; and one can still identify most of details of

the test model even when two-third’s data are discarded.

Although KLT is the optimal solution for unitary data

compression, there are no fast computational algorithms

since it involves solving the eigenvalues and eigenvectors

of the data’s covariance matrix. One is tempted, there-

fore, to employ suboptimal unitary transforms that pos-

sess fast computational algorithms. Discrete cosine trans-

form (DCT) will be considered as an alternative unitary

transformation for unitary compression. The performance

evaluation of the effectiveness of unitary transforms will

be studied in terms of rate-distortion function as a per-

formance measure.

Targets can be identified either by reconstructing im-

ages with sufficient resolution to be recognized by a hu-

man observer, or by extracting features of the target for

automated machine recognition. In future work, we will

explore the use of unitary compression transform in neu-

romorphic target recognition. The unitary compression

transform is used then as a feature detector in which the

principal component can be extracted from the eigenval-

ues of the data’s covariance matrix. The feature extraction

based on the principal component method is by self-or-

ganization as shown in Oja’s work [19]. Moreover, the

unitary compression should be more effective when it is

applied to target recognition, since it is expected that there

is more redundancy in the data for this task than when the

data are used for image reconstruction.
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