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Tomographic Microwave Diversity Image
Reconstruction Employing Unitary
Compression
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Abstract—Data compression through a unitary transform is
utilized in tomographic microwave diversity image reconstruc-
tion in order to reduce the dimensionality and to extract the
features in the data space. The unitary compression is derived
by minimizing the mean-square error (MSE) and the unitary
transform is made of eigenvectors of the data’s covariance, re-
garded to be a Karhunen-Loéve transform. Tomographic mi-
crowave frequency-swept imaging was developed using a unique
target-derived reference technique to access the three dimen-
sional Fourier space of the scatterer and an image reconstruc-
tion algorithm based on the projection slice theorem. It is shown
that: centimeter resolution of a complex object can be pre-
served even when half of the data set is compressed; and that
the reconstructed image remains identifiable by a human ob-
server even when 2 /3 of the data set is compressed.

I. INTRODUCTION

OMOGRAPHIC microwave diversity imaging was
developed and has been in use at the Electro-Optics
& Microwave-Optics Laboratory at the University of
Pennsylvania for over a decade. It demonstrates the fea-
sibility of broad-band projective imaging, with near-op-
tical resolution, of complex shaped scattering object in
the 2-26.5 GHz range [1]-[4]. The basic working prin-
ciple of tomographic microwave diversity imaging relies
on the Bojarski identity of inverse scattering theory [7],
[8]. Based on this principle one can access a 2-D slice of
the 3-D Fourier space of the scattering object by meas-
uring the scattered field from an object that can be rotated
in azimuth relative to a fixed broad-band transmitter/re-
ceiver (T/R) assembly and by digitally sweeping the
transmitted signal over a bandwidth of several GHz for
each rotation angle and coherently detecting the back-
scattered wave field. The Fourier space data acquired in
this fashion, is made of frequency response echos which
are measured at different aspect views of the object which
are equally spaced over a prescribed angular window.
Each echo is quantized over the sweeping frequency spec-
trum. If these frequency response echos are considered as
samples of a stochastic process, they are mutually corre-
lated and have some redundancy.
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In the practical applications of tomographic microwave
diversity imaging, there is an emerging problem of how
to deal with the vast amount of 2-D data acquired from
an imaging radar. For instance, target identification meth-
ods that form an associative memory based on neural net-
works [4] require that the data set be reduced. Similar
problems appear in telecommunication and communica-
tion networks where the capacity of the transmission
channel is limited and signal (data/image/voice) to be
transmitted have to be compressed before the transmis-
sion in order to achieve fast and least distorted transmis-
sion. For all these data compression problems, the key
point is how to find a signal representation identifying the
redundancy of the signal to be compressed. Although no
representation is best in all senses, the unitary transform
has been widely used to serve as one of the signal repre-
sentation in a lot of applications such as image processing
[5], speech processing [6], feature selection in pattern
recognition [17], and analysis and design of communi-
cation systems [11]. Unitary compression is a technique
that applies the unitary transform to data compression,
which allows the redundancy of the data to be identified
and thus removed. The procedure of applying the unitary
transform to the data compression is described as follows:
the measured Fourier data is unitarily transformed to a
domain in which coordinates are de-correlated, and re-
dundant ones are identified and removed; the new Fourier
space data is then obtained by the inverse unitary trans-
form while maintaining a tolerable fixed distortion.

Based on the criterion of minimizing the mean-square
error, a unitary transform, called Karhunen-Loéve trans-
form (KLT), can be given, which will make the vectors
in the data space orthogonal with respect to each other.
As pointed out by Watanaba [13], the Karhunen-Loéve
expansion enables the extraction from a given set of data
those features which are the most significant, i.e., which
bear the greatest amount of information. To do this one
works with the covariance matrix averaged over the whole
data set and diagonalizes it. The data features are then the
eigenvectors and the dominance or importance of these
features are the eigenvalues. While a subset of the data
with respect to smaller eigenvalues of the data’s covari-
ance matrix is defined as redundant ones, the mean-square
error, which is derived as a summation of eigenvalues of
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the covariance, will be minimized. The Karhunen-Loéve
expansion has been widely used as a signal representation
to derive optimal receivers in communication, radar and
sonar applications because it involves bi-orthogonality,
i.e., that both bases and coefficients are orthogonai (or
unitary for complex process) [11], [12].

In this paper, we present first a brief review of the prin-
ciple of broad-band projective imaging by wavelength di-
versity, along with a description of the procedure we used
to access the Fourier space of scattering objects, employ-
ing our experimental microwave imaging facility. The
next part will be a simple introduction to the KL T and its
properties. The main part of the paper will describe image
reconstruction employing unitary compression technique.
This section presents both theoretic derivation and exper-
imental results of the reconstructed images, as well as a
discussion of the implication of these results.

II. ToMOGRAPHIC MICROWAVE DIVERSITY IMAGING

It is well-known that under physical optics approxi-
mation, the scattered field for a perfectly conducting ob-
ject due to plane wave illumination is given by [3]:

AL R
wnm=%i—svmﬂ*w M
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where v (r) represents scattering characteristic function of
the object; r is a position vector of an object point meas-
ured relative to a common origin in the object; R is the
distance between an observation point and the common
origin; A represents the strength of the incident illumi-
nation, and p is a position vector in Fourier space that is
expressed as

p =kl — 1) )

where Iy is the unit vector in the direction of the obser-

vation point and [; the incident unit vector. It is obvious

that ¢ ( p, R) can be regarded as a generalized (3-D) Fou-
rier transform hologram of the scattering function of the
object multiplied by a complex constant. The diversity of
microwave imaging stems from varying by I and/or I,
(angular diversity) and sweeping k (frequency diversity).

Automated measurement of the scattered field from any
band in the 2-26.5 GHz frequency range is provided by
a coherent microwave measurement system consisting of
a microwave sweeper and a coherent receiver shown in
Fig. 1. The test object, a metallized 100:1 scale model
of a B-52 aircraft with a 79-cm wing span and 68-cm fu-
selage, was mounted on a computer-controlled positioner
situated in an anechoic chamber. The measurement se-
quence consisted of angular rotation in azimuth with 0.7
degree increment, frequency stepping in any band from
2-26.5 GHz in selected frequency steps, and measure-
ment and storage of the amplitude and phase from the
coherent receiver, as well as correction of clutter and sys-
tem response. All measurements ware carried out under
control of a DEC modulator instrumentation computer
(MINC 11/2). To avoid aliasing in image space, the fre-
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Fig. 1. Tomographic microwave diversity imaging system scheme.

©

Fig. 2. Results of tomographic microwave imaging of a 100: 1 scale model
of the B-52 airplane for frequency-swept range 2-17 GHz and angular di-
versity 90° covered by 128 views. (a) Projection image. (b) Real part of
Fourier space slice taken. (c) Imaginary part of Fourier space slice taken.

quency steps were selected in increments of 8f = ¢ /2L,
where L is the characteristic size of the scattering object.
Assuming L = 79 cm for the model B-52, a §f = 74.6
MHz was used; thus 201 frequency steps were needed to
cover the 2-17 GHz range in order to satisfy the Nyquist
sampling criterion. The azimuth angle ¢ was changed
from O degree to 90 degrees in steps of 0.7 degree for a
total of 128 angular looks extending from the head-on to
the broadside orientation of the B-52. -

Examples of a slice of the 3-D Fourier domain of the
B-52 are shown in Fig. 2(b) and (c) which consist of polar
plots of 201 frequency points. In these polar plots fre-
quency is along the radial direction and aspect (azimuth
angle) is in the angular direction. Fourier inversion of the -
slice data should yield a projection image of the scattering
centers of the target on a plane normal to the azimuthal
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axis of the rotation, i.¢., the shape estimation of the ob-
ject shown in Fig. 2(a). Resolution of the reconstructed
image is estimated to be about 2 cm from observed details
such as the engines and tail section in this irage.

III. KARHUNEN-LOEVE TRANSFORM

The unitary transforms, defined in a linear inner-prod-
uct space in a complex field which is also called uvnitary
space, are of complex forms of the orthogonal transforms.
The Karhunen-Loéve transform is one of them and will
be outlined for review and to provide background for the
notation used in this paper. It is assumed that a given X
is a second-order discrete stochastic process and that its
covariance is denoted by a 2-D matrix I, defined by

L= E[(x —m)(x — m)¥] €)

where E[-] denotes the statistical expectation; m, is the
1-D mean vector of X; and * is complex transpose. Since
X is a complex process, X, is Hermitian (i.e., complex
conjugate with real diagonal elements). We are interested
only in the truncated version of the Karhunen-Loéve
transform because it has been shown [12] to yield the best
approximation of a stochastic process of all N-dimen-
sional approximations.

Let T* = [y, * - - , ¢n] be a complete, unitary basis
such that X can be expanded in the sense of the mean-
square convergence:

) N
X= 2yY “
i=
where y) are coordinates vector, and the notation = rep-
resents the mean-square equivalence, i.e.,

E KX - gl.y<”¢,.>2} = 0. (5)

Owing to the unitary characteristics of the basis vector 7,
the coordinates y“’ can be obtained by

y =X, ¢;) (©6)

where (-, - ) denotes a complex inner-product for the dis-
crete case. The expansion given by (4) is regarded as the
Karhunen-Loéve expansion when the basis vector T is
~ chosen such that the coordinates are unitary in the prob-
abilistic sense: ‘

E[(y(i) — m(vl)) (y(j) — m.(vj))*] =N 61’j @

where §; is the Kronecker delta function; N;, an eigen-
value of X’s covariance, is given by

Lo = N, @®)

where L, is a Hermitian and non-negative definite matrix,
and ¢; are eigenvectors of X,. The Karhunen-Loéve trans-
form is therefore considered a bi-unitary transform be-
cause both the coordinates and the basis vectors are uni-
tary. It is shown that the Karhunen-Loéve transform is
made of the eigenvectors of the data’s covariance.

If we denote Y* = [y, - - -
expressed in matrix format:

X = T*Y ©)

, y™1, then (4) can be

Since {¢;, i = 1,
each other, i.e.,

-+« , N} are unitary with respect to

(10)

then

TT* =1, (1n

where [ is the identity matrix, and (11) can be rewritten
by

T~ = T* (12)
Hence, the inverse of a unitary matrix is the complex
transpose of the matrix. (9) can, therefore, be rewritten
by multiplying T using (11)

Y = TX. (13)
The covariance of Y is then given by
L, =TLT ' =TET* (14)

From linear algebra, it is known that a Hermitian matrix
can be diagonalized by a unitary matrix consisting of ei-
genvectors of the Hermitian matrix, with the eigenvalues
of the Hermitian matrix as its diagonal elements [14].
Since the covariance matrix X, is Hermitian and T is con-
sisting of eigenvectors of the matrix I, the covariance
matrix ¥, given by (14) can be diagonalized with the ei-
genvalues of I, as its diagonal elements. Thus, (14) can
be rewritten by

|\l
I

T, T7!
TT, T*
M

_ (15)
M

This result implies that the coordinates matrix Y is unitary
because its covariance matrix is diagonal. Since the uni-
tary transform is an inner-product invariant, norm in-
variant transform, the variance is not changed after the
Karhunen-Loéve transform. The variance of X can be ex-
pressed by the diagonal terms of ¥

Var(X) = Var(Y)

N
2N

i=1

(16)

where \; are the eigenvalues of L,.
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IV. IMAGE RECONSTRUCTION EMPLOYING UNITARY
COMPRESSION

A. Theoretical Foundation

The image reconstructed from a sufficient quantity of
acquired Fourier space data is displayed in Fig. 2. How-
ever, the acquired Fourier space data is correlated and
there exists redundancy in terms of correlation. The uni-
tary compression is a technique in which the mean-square
error due to eliminating the redundant data is minimized
through a unitary transform. This unitary transform al-
lows us to extract the most significant features of the ac-
quired data and to compress the data sets so that their re-
dundancy can be removed. The procedure of applying the
unitary transform to the image reconstruction or image
transmission is depicted in Fig. 3. The Fourier space data
X is unitarily transformed to a domain in which coordi-
nates y*) are de-correlated, and redundant ones are iden-

tified and removed. The new Fourier space data X is ob- -

tained by the inverse unitary transform T~ ' while
maintaining a tolerable fixed distortion between X and
X. Thus, X is considered an effective representation con-
taining the most significant information and is used to re-
construct images.

According to Fig. 3, for the acqulred data vector X, we
obtain

Y=TX,

7)
where
X* = [x(l), s x(N)];
y* = [y®, -« -, y™y;
and
T* =Yy, ~ -+, ¥l
From (17) and it follows that T7T* = I, and hence
X =T*Y
N
= 2y, (18)

i=1

where X can be referred to as an expansion in terms of a
complete unitary bases y; (i = 1, , N) and y are the
coordinates. If we wish to retain a subset {yWD, ,

y™ 1 of Y (M =< N) and yet estimate X. This can be done
by replacing remaining N — M components of Y by pre-
selected constants vector b (i = M + 1, , N) to
obtain

(t).‘p + Z b(’)x//

i i=M+1

(19)

where X denotes the estimate of X. The error AX intro-
duced by neglecting the N — M terms can be represented

N §m o 30
o o B INVERSE
2 1 |uniary mans DIMENSION IMAGE
. 1 T ¢ | compressor R UNTARY JRANS- 11 1 | meconsTRucTIoN
! : :
x(N)i' y(NT BN} 7] [
|
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Fig. 3. Block diagram of the image reconstruction procedure with unitary
compression transform.

as
AX=X-X
N
=X - Zy% - 2 b9y,
i=1 i=M+1
N M ) N )
= 2 .Y(i)% -2 y(l)‘h - X b(l)%
i=1 i=1 i=M+1
N .
= 2 (Y- 20)
i=M+1
Thus the mean-square error e is given by
e = E[|AX|*}] = E[AX - AX*] @n
where || || is a norm notation. Substitution of (20) in (21)

leads to

N N
€= E{ b 2 (yO =Dy (yD - b(i))*¢i¢/*:|
=M+ j=M+1

]

N
2 E[(y?Y - 89)] (22)

i=M+1

where the unitary property of ; is used to simplify the

result in (22). In order to minimize the e by choosing both

b") and ;, we take the derivatives of € with respect to

b® and ¢, and set them to zero, that is

de . .
550 = ~2HEV] -5} =0 23)
which yields
p® = E[y(i)]
=yimd (24)

where m ) and m(i) represents the means of X and Y, re-
spectively. Hence the mean-square error e can be rewr1t—
ten after substituting (24) into (22):

m
H

N
; VE[(x— m) (x — m)* 1y F

N
DIV YR

i=M+1

(25)
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where
L, = Elx — m) (x — m)*]

is the covariance matrix of X.

To obtain the optimal ¢;(i = 1, - - - , N) we must not
only minimize ¢ with respect to ¢;, but also satisfy the
unitary constraint:

2 ¢j = 51'/';
or
TT* = I
Thus we use the method of Lagrange multipliers and min-

imize

N
E=e— 2 O[YFYy — 1]
i=M+1

m
Il

(26)

=

N
‘L?‘Ex\bi - Hi[‘pf*‘h - 11
M+1

with respect to y;, where 6, denotes the Lagrange multi-
plier. By taking the derivatives with respect to ,, we have
de ¥ *
5$ = V¢,[¢i Z:x‘ﬁz] - 20iV¢,Wi ¢i]
where V denotes a vector derivative operator. The follow-
ing can be given from the differentiability of the matrix:

@7

Vo[V Eg] = 28,4 (28)
and
Vy, Wi*lﬁi] = 2y;. (29
Thus, from (27) we have
de
A 289 — 204 = 0; (30)
which yields
L.y, = 0y, €2y
in which v, are the eigenvectors of the covariance matrix
r,ie., ¥ =¢(@G =1+, N), and 0, are the eigen-
values, i.e., 8, = N;(i = 1, - - -, N). As previously dis-

cussed, the unitary transform 7, consisting of eigenvec-
tors of the covariance matrix, is called Karhunen-Loéve
transform. It has been shown that Y is unitary (i.e., un-
correlated), which makes it useful in identification where
the unique features of the data can be extracted from the
unitary data sets based on Principal Component Analysis
[17] in which the redundancy of the data can be discerned
[18]. The mean-square error can be given by substituting
(31) in (25):

N
e= 2 oF(N¢)
1=M+1

N
2 A

i=M+1

(32)

The mean-square error caused by discarding the N — M
redundant vectors is the summation of the N — M eigen-
values of the covariance matrix X,. This result indicate
that the effectiveness of a transform component y“’ for
representing the data vector X, is determined by its cor-
responding eigenvalue. If a component y’ is deleted, then
the mean-square error increases by A,, the corresponding
eigenvalue. Thus the set of y) with the M largest eigen-
values should be selected, and the remaining y® dis-
carded since they can be replaced by the constants b, i
=M+1,: -+, N. Itis, therefore, obvious that in order
to minimize the mean-square error while maximizing the
possibility of compressing the data (i.e., maximizing M),
the vectors chosen to be discarded should be these with
smaller eigenvalues. Based on the above analysis, two
important conclusions are given as follows: 1) The KLT
is the optimal transform for unitary compression with re-
spect to the mean-square error criterion. Since the most
significant features about the data are dominated by only
some transform components, removing the redundancy of
the data will be possible; 2) Since Y = TX, the transform
domain covariance L, is expressed by

L, =TL, T = TL,T* (33)

where T consists of the eigenvectors of X, which yields
A
‘ (34)
Ay,
This implies that the vector Y is unitary and uncorrelated.
Since the eigenvalues are the main diagonal terms of
L,, they correspond to the variances of the transform com-
ponents y©, i = 1, - - - , N. Thus a logical criterion for
selecting transform components is to retain the set of
components with the M largest variance, while the re-
maining (N — M) components are discarded. This process
of components selection is referred to as the variance cri-

terion method. Since the total variance of X is the sum of
all eigenvalues of L,, the variance-loss-ratio is defined by

mean-square error
total variance

VLR = X 100%; (35)
where the mean-square error is caused by eliminating

some vectors. The compression-ratio is defined as

no. of vectors eliminated
CR =

x 100%. (36)

total no. of vectors
These two ratios are used as the important performance
indexes to test the effectiveness of the unitary compres-
sion. ‘

B. Experimental Results

The experimental setup was as described in Section 1I,
and the experimental conditions and parameters are same
as these given previously. The test object, a metallized
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100: 1 scale model of B-52 aircraft, is mounted on a com-
puter-controlled position situated in the anechoic cham-
ber. The received Fourier space slice data is composed of
128 views spanning 90 degress rotation of the test object
(i.e., 128 equally spaced views spanning a 90 degrees an-
gular window), and 201 sampling points for each view
covering a 2-17 GHz frequency bandwidth. Therefore,
the measured scattering data set for the target is a 128 X
201 matrix representing 128 aspect views, each of which
has 201 sampling points. The covariance representing the
correlations between aspect views, can be formed for the
128 aspect views. Since the scattering data are of complex
numbers, the covariance can be given by

1 Nsamp

£! = D2 @ = md) & - m)s

Nsamp -
(37

where * denotes the complex transpose, NSamp denotes the
number of the sampling points, and m?’ is the mean of
x"), which is computed as

1 M

Z xy

N samp k=

m®

) Nview) (38)
where N, denotes the number of the aspect views. The
covariance matrix L7 is Hermitian and takes a maximum
value when i = j. Both eigenvalues and eigenvectors of
the covariance matrix are computed by using IMSL, a
popular Fortran library for mathematical applications [19].
The Fourier space slice data received is transformed by
the KLT which consists of the eigenvectors of the data’s
covariance and the data in transform domain are unitary,
or uncorrelated with respect to each other. The eigenval-
ues solved by

Lo, = No;

are illustrated in Fig. 4, where the eigenvalues, because
of Hermitian nature of the covariance matrix, are real val-
ued and can be ranked by magnitude. Since the eigenval-
ues are the main diagonal terms of I, they correspond to
the variance of the transform component y“’. Thus, Fig.
4 will be referred to as the variance dlStI‘lbuthl’l. The area
under the variance distribution curve for a given number
of transform components is an indication of the amount
of energy contained in those components. It is apparent
that almost all of the signal energy (i.e., area under the
curve) is packed into first half or one-third KLT compo-
nents. Therefore, the most important information needed
for image reconstruction is concentrated in only a few
dominating aspect views and there is a great deal of re-
dundancy in the raw data. According to variance crite-
rion, these transform components corresponding to the
larger eigenvalues contain the most significant features
and should be kept, while the remaining with respect to
smaller eigenvalues are considered as the redundant ones
and discarded. The mean-square error caused by elimi-
nating the redundant data can be minimized by discarding
these aspects views with smaller associated eigenvalues.

(39

10.0 T T T T T T
9.0 —
8.0 b
7.0 -
6.0[F —
504 i

Eigenvalues A;

4.0

3.0 B
2.0

1.0 1

0'00 16 32 48 64 80 96 112 128

Fig. 4. Ordered eigenvalues of data’s covariance.

TABLE I
VARIANCE-L0SS-RATIO (VLR)
VERSUS COMPRESSION RATIO (CR)

CR (%) VLR (%)
o~ 7.8% 01%
== 39% 1%
£ =~ 50% 15%
2 = 78% 4%
B~ 04% 18.6%

=
|

The relation between VLR and CR (both defined above)
is demonstrated in Table I, where it is seen that, even
when 64 vectors (half of the total number) are eliminated,
the loss (i.e., mean-square error) is small, VLR = ﬁ.
If the signal energy is essentially contained in 43 of the
128 KLT components, a 3: 1 data compression is consid-
ered. For a 3:1 compression, 43 KLT components cor-
responding to the largest diagonal terms of ¥, are se-
lected. Such a compressed unitary data set is denoted by
Y. An inverse KLT which, because of its unitary, is a
complex transpose of T, is employed to reconstruct the
image. Thus, the data to be used for image reconstruction
are X = T * ¥. The images reconstructed by employing
unitary compression are presented in Figs. 5 and 6. As
illustrated in Fig. 5 where half of the coordinates y“’ (64)
are discarded, the reconstructed image is still legible and
has same centimeter resolution as the original one shown
in Fig. 1(a). Fig. 6 shows the reconstructed image when
2 /3 of the received data have been discarded, i.e., a 3:1
data compression is achieved, in order to demonstrate that
the centimeter resolution can be preserved. It is appar-
ently shown in Fig. 6 that two engines on the wing can
still be recognized, although there is some blurring. In
conclusion, the unitary compression is an effective tech-
nique for dimension reduction in image reconstruction. It
presents the statistical optimal solution for the data
compression and feature extraction in the sense of mini-
mizing the mean-square error. The variance criterion has
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Fig. 5. Result of image With UCT when CR = 1/2 (half of the data are
compressed).

Fig. 6. Result of image with UCT when CR = 2/3 (two thirds’ of the
. data are compressed).

demonstrated the capability of identifying.the redundancy
of the correlated data sets.

V. CONCLUSION

This work was initiated to study the feasibility of ap-
plying unitary compression to tomographic microwave di-
versity image reconstruction. It was found that a unitary
transform, the Karhunen-Loéve transform, can provide a
good representation of the data so that the redundancy of
the data can be identified and thus allows for removal.
This representation is based on minimizing the mean-
square error, which leads to a statistical optimal solution.
The mean-square error caused by discarding thé redun-
.dant data is derived as the sum of those eigenvalues cor-
responding to the discarded data. Therefore, the eigen-
values of the data’s covariance matrix are used as features
to identify the redundancy of the data. According to the
variance criterion, the discarded data, which is consid-
ered redundant, should be these with the smaller eigen-
values. The reconstructed images employing the unitary
compression show that image quality is basicallly pre-
served after half of the total data has been selectively
eliminated; and one can still identify most of details of
the test model even when two-third’s data are discarded.

Although KLT. is the optimal solution for unitary data
compression, there are no fast computational algorithms
since it involves solving the eigenvalues and eigenvectors
of the data’s covariance matrix. One is tempted, there-
fore, to employ suboptimal unitary transforms that pos-
sess fast computational algorithms. Discrete cosine trans-
form (DCT) will be considered as an alternative unitary
transformation for unitary compression. The performance
evaluation of the effectiveness of unitary transforms will
be studied in terms of rate-distortion function as a per-
formance measure.

Targets can be identified either by reconstructing im-
ages with sufficient resolution to be recognizéd by a hu-
man observer, or by extracting features of the target for
automated machine recognition. In future work, we will
explore the use of unitary compression transform in neu-
romorphic target recognition. The unitary compression
transform is used then as a feature detector in which the
principal component can be extracted from the eigenval-
ues of the data’s covariance matrix. The feature extraction
based on the principal component method is by self-ot-
ganization as shown in Oja’s work [19]. Moreover, the
unitary compression should be more effective when it is
applied to target recognition, since it is expected that there
is more redundancy in the data for this task than when the

. data are used for image reconstruction.
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